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Abstract— Identification of sparse high dimensional linear
systems pose sever challenges to off-the-shelf techniques for
system identification. This is particularly so when relatively
small data sets, as compared to the number of inputs and
outputs, have to be used.

While input/output selection could be performed via stan-
dard selection techniques, computational complexity may how-
ever be a critical issue, being combinatorial in the number of
inputs and outputs.

Parametric estimation techniques which result in sparse
models have nowadays become very popular and include,
among others, the well known Lasso, LAR and their “grouped”
versions Group Lasso and Group LAR.

In this paper we introduce a new nonparametric technique
which borrows ideas from a recently introduced Kernel esti-
mator called “stable-spline” as well as from sparsity inducing
priors which use �1 penalty. We compare the new method with
a group LAR-type of algorithm applied to estimation of sparse
Vector Autoregressive models and to standard PEM methods.

I. INTRODUCTION

Several application domains, ranging from chemical en-
gineering to economic systems, from computer vision to
environmental modeling and monitoring are characterized
by large amounts of measured variables. When it comes to
estimating dynamic relationship among these variables one is
faced with the problem of estimating dynamical systems with
large numbers of inputs and outputs. We call these systems
“large scale systems”. Even restricting to the linear world,
these systems pose severe challenging to state of the art tools
for linear system identification. On the one side handling
large scale systems may render parametric (nonlinear) opti-
mization based methods like Prediction Error Minimization
(PEM) methods [1], [2] computationally challenging due to

(i) non-convexity
(ii) parametrization issues

(iii) large numbers of parameters to be estimated as com-
pared to the number of data available.

Remaining within the optimization based methods, the
parametrization issue may be circumvented by the so-called
Data Driven Local Coordinates (DDLC) [3]. Alternatively
the so-called subspace methods [4], [5], [6] have been
developed; these are numerically stable procedures which
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are not based on iterative non-linear optimization and rather
deliver the estimates in two steps, relying in robust tools in
numerical linear algebra like QR and SVD decomposition.
The reader is referred to [7], [8] for a survey on recent results.
These methods overcome limitations (i) and (ii) mentioned
above. However item (iii) is still an issue. In this paper we
are concerned with problems in which the number of inputs
and outputs may be large as compared to the number of
data and the system is structured in that, e.g., only subset
of past inputs and outputs is needed to predict a certain
output channel. In such situations both parametric estimation
methods as well as subspace methods may run into troubles.
The statistics and machine learning literatures have addressed
these issues quite extensively; however, to the best of the
authors knowledge most work has been done is the “static”
scenario while very little (with some exception [9],[10], [11])
can be found regarding estimation of dynamic systems.

Parametric estimation techniques which result in sparse
models have nowadays become very popular and include,
among others, the well known Lasso [12], Least Angle
Regression (LAR) [13] and their “grouped” versions Group
Lasso and Group LAR (GLAR) [14].

In this paper we introduce a new nonparametric technique
which borrows ideas from a recently introduced Kernel
estimator called “stable-spline” as well as from sparsity
inducing priors which use �1 penalty. We compare the new
method with a group LAR-type of algorithm applied to
estimation of sparse Vector Autoregressive models and to
standard PEM methods.

The structure of the paper is as follows: Section II states
the problem and set up notation. In Section III we briefly
recall LASSO, LAR and GLAR and discuss how the GLAR
algorithm can be utilized to perform input selection in Vector
Autoregressive with exogenous inputs (VARX) models. The
non parametric estimator is introduced in Section IV and
simulation results are presented in Section V. Section VI
contains conclusions and directions for future work.

II. STATEMENT OF THE PROBLEM AND NOTATION

Let {yt}t∈Z, yt ∈ R
p and {ut}t∈Z, ut ∈ R

m be a pair of
jointly stationary stochastic processes which are, respec-
tively, the output and input of an unknown time-invariant
dynamical system. With some abuse of notation the symbol
yt will both denote a random variable (from the random
process {yt}t∈Z) and its sample value. In particular we define
the sets of past measurements at time t

Y t = [yt−1 yt−2 . . .] , Ut = [ut−1 ut−2 . . .]



The symbols E[·] and E[·|·] denote, respectively, expectation
and conditional expectation while Ê[·|·] denotes the best
linear estimator (conditional expectation in the Gaussian
case). In addition for A ∈ R

n×m, Ai j will denote the element
of A in position (i, j). If A is a vector the notation1 Ai will be
used in place of Ai1 or A1i. The symbol I denotes the identity
matrix of suitable dimensions and A� is the transpose of the
matrix A. The symbol ‖x‖ p denotes the p−norm of the vector
x.

Our purpose is to identify a linear dynamical system2 of
the form

yt =
∞

∑
k=1

fkut−k +
∞

∑
k=0

gket−k (1)

were fk ∈ R
p×m and gk ∈ R

p×p are matrix coefficients of
the unknown impulse responses and et is the innovation
sequence, i.e. the one step ahead linear prediction error

et := yt − Ê[yt |Yt ,Ut ]
= yt − ŷt|t−1
= yt −∑∞

k=1 hkut−k −∑∞
k=1 qkyt−k.

(2)

The matrix sequences hk ∈ R
p×m and qk ∈ R

p×p, k ∈ Z
+ are

the predictor impulse response coefficients.
Following the Prediction Error Minimization framework,

in this paper we shall convert identification of the dynamical
system in (1) in estimation of the predictor impulse responses
hk and qk in (2) from a finite set of input-output data
{ut ,yt}t=1,..,N . We shall consider large scale systems in which
the numbers p and/or m are very large as compared to
the number of available data N; in addition we shall also
assume that only few inputs and/or outputs are needed to
predict the i− th component of yt . Mathematically this can
be formulated as follows: consider prediction of the i− th
component of yt . Assume the j−th component of y and �−th
component of u are not needed to predict yt . This means that
hi�

k = qi j
k = 0, ∀k ∈ Z

+. For simplicity of exposition we shall
restrict the attention to MISO systems (i.e. p = 1); however
the methodologies described in this paper are by no means
limited to this situation.

The problem we consider from now on is, therefore, that
of estimating qk and hi

k in

ŷt|t−1 =
m

∑
i=1

[
∞

∑
k=1

hi
ku

i
t−k

]
+

∞

∑
k=1

qkyt−k (3)

In practice one does not know whether a measured input
and/or output is significant for prediction of yt . Standard
PEM methods [1], [2] do not attempt to perform input
selection and estimate a “full” model which use all inputs.
As we shall see this may yield poor results when the number
of inputs becomes large as compared to the data available.

Variable selection methods has been subject of intense
research; classical methods can be found in the books [15],
[16] while we refer to the survey [17] for a more recent
overview.

1There is no risk of confusion with matrix powers since we shall never
use matrix powers in this paper.

2In order to streamline notation we shall assume one delay from ut to yt .

In this paper we shall adapt recent work on estimation of
sparse models [13] to identification of linear predictors.

III. SPARSITY INDUCING PRIORS FOR
ESTIMATION OF AUTOREGRESSIVE MODELS

Let us consider the problem of estimating the parameter
θ ∈ R

n in the linear model

Y = Xθ +W (4)

where Y ∈ RN is the output vector data, X ∈ R
N×n is the

“regression vector” and W ∈ R
N is a noise term which we

shall assume to be a zero mean vector with E[WW �] = σ2I.
When the number n of regressors is very large (e.g. as

compared to the number N of data available), obtaining
accurate and stable predictors and easily interpretable models
becomes a challenging issue which has been quite exten-
sively addressed in the statistical literature in the last decade,
see e.g. [12], [18], [16], [13], [19], [20] and references
therein.

A pioneering work in this direction has been the so called
Lasso (Least Absolute Shrinkage and Selection Operator)
[12] in which regressor selection has been performed by
solving a problem of the form

θ̂ := arg min
θ

‖Y −Xθ‖2
2 s.t. ‖θ‖1 ≤ t (5)

Equivalently, (5) can be formulated as an �1-penalized
regularization problem of the form

θ̂ := arg min
θ

‖Y −Xθ‖2
2 + γ1‖θ‖1 (6)

which in turn can also be seen as the Maximum a Posteriori
(MAP) estimator in a Bayesian framework by assuming that
W has a Gaussian distribution and θ a double exponential-
type prior

p(θ ) ∝ e−λ‖θ‖1 .

Despite its nice properties it has been argued (see [21]) that
Lasso had not had a significant impact in statistical practice
due to its relative computational inefficiency. The Least
Angle Regression (LAR) algorithm [13] has provided a new
approach to regressor selection and, with minor modifications
(which shall be called “Lasso modification”, see [13] for
details), also an efficient implementation of the Lasso.

A. Input selection in VARX models

Recently the Lasso, possibly implemented via the LAR
algorithm, has been proposed for estimation of regression
models with autoregressive noise [9] and for Vector Autore-
gressive with eXogenous inputs (VARX) models [10]. This is
a rather straightforward application once the regressor matrix
X in (5) is formed with past inputs and outputs. In fact
consider (3) and assume the predictors have finite memory
M (i.e. we restrict to VARX(M) models). Then

yt = ∑m
i=1

[
∑M

k=1 hi
ku

i
t−k

]
+ ∑M

k=1 qkyt−k + et

= Xtθ + et
(7)



where

Xt := [u1
t−1, ..,u

1
t−M, ...,um

t−1, ..,u
m
t−M,yt−1, ...,yt−M]

θ := [h1
1, ..,h

1
M, ...,hm

1 , ..,hm
M,q1, ...,qM]�.

(8)
Taking into account that data yt ,ut are available for t =
1, ..,N, (7) can be written compactly as⎡

⎢⎢⎢⎣
yN

yN−1
...

yM+1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

XN

XN−1
...

XM+1

⎤
⎥⎥⎥⎦θ +

⎡
⎢⎢⎢⎣

eN

eN−1
...

eM+1

⎤
⎥⎥⎥⎦

which is of the form (4).
However, these approaches do not enforce any structure in

the estimated zero pattern of θ̂ . For instance, with reference
to (7) and (8), in order to construct a sparse predictor which
uses only a subset of the available inputs ui

t , i = 1, ..,m and
output yt , one has to guarantee that groups of components in
θ̂ are zeros. With reference to (8), if e.g the first M entries
of θ̂ are zero, i.e. ĥ1

1 = ... = ĥ1
M = 0, then the first input (u1

t−k
∀k > 0) does not enter in the prediction of yt .

This entails estimation in “grouped” variables and has
been addressed in [14], [22]. Basically one needs to extend
the Lasso/LAR ideas to guarantee that selection is performed
among groups of variables and no longer on single variables.
Such extensions are called, respectively, Group Lasso and
Group LAR in [14].

While the LAR algorithm can be modified to obtain the so-
lution to the Lasso problem (5), this is no longer true for their
group versions as discussed in [14]. Unfortunately the LAR
algorithm (without the “Lasso modification”) does not have
an immediate interpretation as a regularized optimization
problem of the form (6). However due to its computational
simplicity we prefer to work with the Group LAR algorithm
which we shall describe in the next section. Later in the paper
we shall extend this algorithm to perform sparse estimation
in Reproducing Kernel Hilbert Spaces, which will be the core
of our contribution.

B. Group Least Angle Regression (GLAR)

Consider the problem

Y =
K

∑
i=1

X(i)θ(i) +W (9)

where Y ∈ RN is the output vector data, X(i) ∈ R
N×ni , i =

1, ..,K, are the groups of regression vectors, θ (i) ∈ R
ni×1

is the i − th group of variables and W ∈ R
N is a noise

term which we shall assume to be a zero mean vector with
E[WW�] = σ2I.

The Group LAR (GLAR) algorithm proceeds as follows
[14]:

GLAR Algorithm3

(a) set Ŷ(0) = 0, Xsel = /0
(b) for i = 0 : K−1 do:

3This is actually a simplified version. See [14] for more details.

(1) Among the groups that have not been already
selected (i.e. X(i) /∈ Xsel) find the group X( j) that
has the smallest canonical angle with Y − Ŷ(i) and
add it to the set Xsel of selected groups;

(2) let E(i) be the projection of Y − Ŷ(i) onto the space
spanned all the groups in the set Xsel ;

(3) move along the direction E(i), i.e. set Ŷ(i+1) =
Ŷ(i) + αE(i), α > 0 until Y − Ŷ(i+1) has as large
correlation with some other group X( j̄) /∈ Xsel as
with X( j). Let ᾱ be the value of α which satisfies
this condition

(4) set Ŷ(i+1) = Ŷ(i) + ᾱE(i)
(5) go back to (b).

The predictors Ŷ(i), i = 1, ..,K, have the form

Ŷ(i) =
K

∑
j=1

X( j)θ̂( j)

where only i of the groups θ̂ j, j = 1, ..,K, have some nonzero
entry. Choosing among the predictors Ŷ(i), i = 1, ..,K can be
done, for instance, using the Cp statistic as suggested in [14].
We shall use instead a validation based approach described
in Section V; this approach seems to be more robust that C p.

It is worth recalling that the whole GLAR algorithm
producing all estimators Ŷ (i) has a complexity which is of
the same order as that of solving a standard least squares
problem for the model (9).

This algorithm can be directly employed to estimate a
VARX model as in (7) once the order M has been specified.
However both the number of nonzero components as well
as M have to be estimated from data. This could be done
using order estimation techniques (AIC,BIC) for M (see e.g.
[1], [2]) together with Cp-type statistics for estimation of
the number of nonzero components (see [14]). For reasons
which will become clear later on, we shall adopt a validation
based approach to select both M and the number of nonzero
groups, see Section V for details. We shall call the resulting
algorithm VARX-GLAR.

C. GLAR with �2 penalty

Consider now a regularized problem similar to (6) where
also an �2 penalty on the coefficients is considered4

θ̂ := arg min
θ

‖Y −Xθ‖2
2 + γ1‖θ‖1 + γ2

2‖θ‖2
2 (10)

Remark 1: A mixed �1-�2 optimization problem of the
form (10) has been called in the literature “elastic net” (see
[23]). Discussion regarding drawbacks of this formulation
for simultaneous selection (Lasso, �1 penalty) and shrinkage
(ridge-regression, �2 penalty), as well as for possible reme-
dies can be found in [23]. We shall not pursue this avenue
here.

Problem (10) can be equivalently formulated in the form

θ̂ := arg min
θ

‖Ȳ − X̄θ‖2
2 + γ1‖θ‖1 (11)

4The reason for introducing the �2 penalty will become clear in Section
IV.



where

Ȳ :=
[

Y
0n×1

]
X̄ :=

[
X

γ2In×n

]
. (12)

As discussed in [13], problem (11) can be efficiently
solved via the LAR algorithm. Since, as mentioned in the
previous section, we are interested in the “grouped” version,
we shall apply the GLAR algorithm to the regression prob-
lem

Ȳ =
K

∑
i=1

X̄(i)θ(i) +W̄ (13)

where Ȳ is as in (12), X̄(i) ∈ R
(N+n)×ni is the i− th group of

columns of X̄ in (12) and

W̄ :=
[

W
Wθ

]
W̄ ∼ N

(
0,σ 2I

)
(14)

IV. STABLE SPLINE KERNEL

The VARX-GLAR algorithm introduced in Section III
has two important limitations: (i) the VARX order M has
to be either known or estimated from data and (ii) only
finite-memory predictors are described within this class. As
a consequence of this second item, in order to describe
predictors with very long (possibly infinite) memory, a
large number of parameters is needed. This may become
troublesome in particular when only small data set are
available. To overcome these limitations, we consider an
alternative approach, initiated in [24], [25], in which we
assume {qk} and {hi

k} are realizations from a Gaussian
processes, mutually independent and independent of {e t}.
Their auto-covariances (kernels) are denoted by

cov(qt ,qτ) = γ2
2 Kβ (t,τ), t,τ ∈ N (15)

cov(hi
t ,h

j
τ) = γ2

2 Kβ (t,τ), t,τ ∈ N (16)

where γ2 in an unknown positive scale factor and β is
an asymptotic exponential decay-rate parameter to be
determined from data.

Following [24], we introduce the so called Stable Spline
Kernel Kβ (t,τ) as a time-warped version of the autoco-
variance of the integrated Wiener process; this guarantees
that realizations from (15) are almost surely BIBO stable
sequences.

To define the kernels, recall that, assuming zero initial
condition at time zero, the autocovariance of the integrated
Wiener process is (see e.g. [26])

W (s,τ) =
sτ min{s,τ}

2
− (min{s,τ})3

6
, (s,t) ∈ R

+ ×R
+

Following [24], stability can be included by means of an
exponential time-transformation which leads to definition of
the so-called stable spline kernel

Kβ (t,τ) = W (e−β t ,e−β τ) (t,τ) ∈ R
+×R

+ (17)

Note that there is a duality between zero-mean Gaussian
processes with autocovariance K and the RKHS HK , e.g.
see Section 1.4 in [27]; hence we shall interchangeably use
the terms autocovariance an Kernel in the sequel.

An in-depth treatment on RKHS can be found in the
seminal work [28]. Here, we recall that given a symmetric
and positive-definite kernel K defined on a metric space X ,
the associated RKHS HK is the Hilbert space of functions
on X which are the completion of the manifolds given by all
the finite linear combinations

l

∑
i=1

miK(·, ti) (18)

for all choices of l, {mi} and {ti}, with inner product

< ∑
i

miK(·, ti),∑
j

n jK(·,s j) >HK= ∑
i, j

min jK(ti,s j) (19)

Since < f (·),K(·,x) >HK = f (x), K is also named
reproducing kernel of HK .

In our context, it will be useful to introduce a finite
dimensional subspace of HK as follows: let L

2(R+) indicate
the space of square integrable functions on R

+ with respect
to the Lebesgue measure. Recall that, under suitable technical
conditions, Mercer theorem on noncompact domains [29]
states that K admits an eigenfunctions-eigenvalue decompo-
sition with eigenfunctions {ρ j} and corresponding eigenval-
ues {λ j}. The functions {ρ j} are orthogonal in Lβ (R+),
the space of square integrable functions on R

+ with norm
weighted by the density βe−β t . If λ1 ≥ λ2 ≥ . . . > 0 [30],
HK is defined by

HK =

{
f ∈ L

2 | f (s) =
∞

∑
j=1

a jρ j(s),
∞

∑
j=1

(a j)2

λ j
< ∞

}

Then, for J ∈ N, we define

H J
K = span{ρ1, . . . ,ρJ} (20)

so that, if h ∈ H J
K , for a suitable a ∈ R

J it holds that

h(x) =
J

∑
j=1

a jρ j(x), ‖h‖2
H =

J

∑
j=1

(a j)2

λ j

The following proposition, taken from [24], is especially
useful for numerical purposes. In fact, it provides the eigen-
functions of the stable spline kernel (17) in closed form.

Proposition 2: The eigenvalues {λ i} of the stable spline
kernel (17) are defined by

λi = (1/αi)4 i = 1,2, ... (21)

where αi denotes the solution of

1/cosh(α)+ cos(α) = 0 (22)

which is closest to (i−1/2)π .
In addition, the associated eigenfunctions {ρ i} are

ρi(τ,β ;αi) = φi(e−β τ ;αi) τ ∈ X (23)

where

φi(t;αi) = C1(αi)cos(αit)+C2(αi)sin(αit)
+ C3(αi)e−αi(1−t) +C4(αi)e−αit t ∈ [0,1]
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Fig. 1. Eigenvalues {λi}50
i=1 of the stable spline kernel.

and {Ck} are scalars satisfying

C4(α) = (
∫

S
[C1(1)cos(αt)+C2(1)sin(αt)

+ C3(1)e−α(1−t) + e−αt ]2dt)−1/2

C3(C4) = C4(α)
[

2
1+ e−2α −1

]
/sin(α)

C2(C4) = C4(α)−C3(C4)e−α

C1(C4) = −C4(α)−C3(C4)e−α

In Fig. 1 the first 50 eigenvalues of the stable spline kernel
are displayed.

A. GLAR in Reproducing Kernel Hilbert Spaces

Let us assume now that the impulse responses hi, q are
(sampled versions of) functions in HK . The problem of esti-
mating the impulse responses hi, q from measured data can
be formulated as the following Tikhonov-type regularization
problem:

{ĥi, q̂}= arg min
hi,q∈HK

N

∑
t=t0

(yt − ŷt|t−1)
2 +γ2

2

(
‖q‖2

HK
+

m

∑
i=1

‖hi‖2
HK

)
(24)

subject to

ŷt|t−1 =
m

∑
i=1

[
∞

∑
k=1

hi
ku

i
t−k

]
+

∞

∑
k=1

qkyt−k

The parameter γ2 is the so called regularization parameter
which has to trade fit yt − ŷt|t−1 vs. regularity of q and hi.

In order to reframe this problem in a finite dimensional
setup, we assume from now on that hi,q ∈ H J

K , i.e. that for
suitable ai ∈ R

J and b ∈ R
J , it holds that

hi
k = ∑J

j=1 a j
i ρ j(k), ‖h‖2

H = ∑J
j=1

(a j
i )

2

λ j

qk = ∑J
j=1 b jρ j(k), ‖q‖2

H = ∑J
j=1

(b j)2

λ j
;

the number J does not have to trade bias vs. variance but is
just related to computational issues. Define the filtered past

input and output data as follows5:

φ i j
t = ∑∞

k=1 ui
t−kρ j(k)

ψ j
t = ∑∞

k=1 yt−kρ j(k)
(25)

Using (25) equation (3) can be rewritten in the form

ŷt|t−1 =
m

∑
i=1

[
J

∑
j=1

a j
i φ i j

t

]
+

J

∑
j=1

b jψ j
t . (26)

Hence, under the restriction hi,q ∈ H J
K , the solution to

problem (24) can be rewritten as

ĥi
k = ∑J

j=1 â j
i ρ j(k), q̂k = ∑J

j=1 b̂ jρ j(k) (27)

where {âi, b̂} solve the problem6

arg min
ai,b∈RJ

N

∑
t=t0

(yt − ŷt|t−1)
2 + γ2

2

J

∑
j=1

(
(b j)2

λ j
+

m

∑
i=1

(a j
i )

2

λ j

)
(28)

subject to (26).
Problem (28) is an �2-penalized linear regression problem

which can be rewritten in the form

Ȳ =
m+1

∑
i=1

X̄(i)θ(i) +W (29)

provided we define Ȳ := [y�N ,y�N−1, ...,y
�
t0 ,01×(J(m+1))]�,

θ(i) := ai i = 1, ..,m
θ(m+1) = b

(30)

X := [X(1) X(2) . . . X(m+1)]

X(i) :=

⎡
⎢⎣

φ i1
N . . . φ iJ

N
... . . .

...
φ i1

t0 . . . φ iJ
t0

⎤
⎥⎦ i = 1, ...,m

X(m+1) :=

⎡
⎢⎣

ψ1
N . . . ψJ

N
... . . .

...
ψ1

t0 . . . ψJ
t0

⎤
⎥⎦

(31)

X̄ := [X� Λ̄]� Λ̄ := Im+1 ⊗Λ
Λ := diag{γ2/

√
λ1, ...,γ2/

√
λJ} (32)

and X̄(i) is the i− th block column of X̄ (corresponding to
the partition of X in (31)).

Performing input selection can be tackled, as discussed in
Section III, via the Group Least Angle Regression algorithm
in subsection III-C applied to the regression problem (29).
We shall call SS-GLAR (Stable Spline Group Least Angle
Regression) the resulting algorithm which we now summa-
rize:

Algorithm: Stable Spline Group Least Angle Regression
(SS-GLAR)

5These infinite sums will have to be truncated in practice since only
a finite amount of data is available. This is not a critical issue since the
eigenfunctions ρj decay exponentially to zero.

6Note that, since data are available only in the interval [1,N], the predictor
ŷt0 |t0−1 can only use data in the time interval [1,t0 −1]. The initial time t0
is chosen so that it is comparable to the “practical” length of the predictor
impulse responses.



1) fix the parameter β in (17), compute the eigenfunctions
ρ j in (23), the regressors φ i j

t and ψ j
t in (25);

2) fix the parameter γ2 in (24) and (32); form the regressor
X̄(i) in (29) as described in formulas (31),(32);

3) estimate θ(i) applying the LAR algorithm to problem
(29);

4) estimate ĥi and q as in (27) where âi and b̂ are found
from θ̂ according to (30).

Note that, in order to do so, the following parameters have
to be chosen:

(a) the �2 penalty γ2 in (32) (regularity of hi
k,qk in the

space HK)
(b) the parameter β in (17) (decay rate of the eigenfunc-

tions ρ j)
(c) the number of non-zero blocks estimated via the GLAR

algorithm.

We shall describe in Section V a validation based approach
to estimate these “hyperparameters”.

V. SIMULATION RESULTS

In order to validate the proposed approaches we compare,
in two simulation studies, (i) SS-GLAR, (ii) VARX-GLAR
and (iii) PEM from the Matlab toolbox.

Before describing the experimental setup and the results,
we discuss the choice of the hyperparameters used in SS-
GLAR, order estimation for PEM and VARX-GLAR and
the choice of the sparsity in SS-GLAR and VARX-GLAR.

A. Choice of hyperparameters, sparsity and order estimation

In this paper we propose a very simple validation based ap-
proach as follows. Let {yt ,ut}t=1,..,N be the available data; in
this paper N = 500. We split the data set in two parts. We call
identification data set {yt ,ut}t=1,..,�2N/3� and validation data
set {yt ,ut}t=
2N/3�,..,N . We run the identification algorithms
for fixed hyperparameters on the identification data set and
we validate the identified model on the validation data set.
We grid the hyperparameter space (β ∈ R

+, γ2 ∈ R
+) so that

only a finite (and possibly small) number of alternatives is
tested7. Also different level of sparsity (i.e. different number
of non-zero groups i = 1, ..,m + 1) are tested. We finally
select the identified model which performs best (as measured
by the root-mean-squared error in one-step-ahead prediction
error (33)) on validation data.

We follow a similar approach for choosing the autore-
gressive order as well as the level of sparsity for the VARX-
GLAR algorithm.

The PEM method is applied to state space models of order
n; the order is either fixed (Example 1) or selected using the
validation approach described above selecting n ∈ [1 : 20]
(Example 2).

7Experimental evidence shows that the results are not very sensitive to
choice of hyperparameters, so that a rather rough grid suffices.

B. Performance Evaluation

The predictive performance of all identified models are
then tested on new data, called test set composed of 500
data points generated using the same data generating mech-
anism used for identification (but of course with different
realizations of the inputs and the innovation process).

For simplicity of exposition let us define δq0 to be 1 if
the true impulse response q = 0 and zero otherwise and let
the I0 be the subset of {1, ..,m} of indexes corresponding to
hi = 0, i ∈ I0.

The following performance indexes are considered:

1) k-step-ahead root mean squared error

RMSk :=

√√√√ 1
500

500

∑
i=1

(yt − ŷt|t−k)2 (33)

2) k-step-ahead root Coefficient of Determination (COD)

CODk := 1− RMS2
k

1
500 ∑500

i=1(yt − ȳ)2
(34)

where ȳ is the sample mean of yt .
3) Norm of estimated impulse responses corresponding to

inputs/outputs not present in the model generating the
data.

Err0 := ∑
i∈I0

‖ĥi‖2 + δq0‖q̂‖2 (35)

4) Normalized error in estimating impulse responses cor-
responding to inputs/outputs present in the model gen-
erating the data

Err1 := ∑
i/∈I0

‖hi − ĥi‖2

‖h‖2
+(1− δq0)

‖q− q̂‖2

‖q‖2
(36)

We perform NMC = 125 Monte Carlo runs and, for each
run = 1, ..,NMC, we compute the indexes above which are
denoted by RMS j

k, CODj
k Err j

0, Err j
1. Average values over

the Monte Carlo study of these quantities will be denoted
with a bar on top, e.g. RMSk := 1

NMC
∑NMC

j=1 RMS j
k.

C. Example 1

We consider a MISO linear system with 15 inputs of the
form

yt =
15

∑
i=1

F(z)δiu
i
t +G(z)et (37)

where

F(z) =
z2 −0.81

z(z2 −1.6z+ 0.89)
G(z) =

z2 −0.8z+ 0.97
z2 −1.6z+ 0.89

The inputs are independent white Gaussian noises, zero
mean and unit variance. The innovation process {et} is also a
zero mean, unit variance Gaussian process. The variables δ i,
i = 1, ..,15 are either zero or one and determine which inputs
actually affect y(t). We perform NMC = 125 Monte Carlo
experiments and, for each run, δ i are chosen as realizations
of independent Bernoulli random variables with parameter
p = 0.3, i.e. P[δi = 1] = p and P[δi = 0].

We compare the following estimators:



1) SS-GLAR described in Section IV; the parameters
β ,γ2 and the level of sparsity (i.e. the number of
nonzero impulse responses) is determined using the
validation based approach described above.

2) VARX-GLAR described in Section III. The order of
the VARX models is constrained to be between 1 and
30; both this order and the number of nonzero com-
ponents have been estimated using the same validation
based approach as above.

3) Matlab PEM assuming the order to be known (the exact
order is 3).

Note that this example is extremely challenging for both
SS-GLAR and VARX-GLAR as they compete against PEM
which assumes the correct parametric structure with known
order.

D. Example 2

We consider a MISO ARMAX linear system with 15
inputs of the form

A(z)yt = ∑15
i=1 Bi(z)ui

t +C(z)et (38)

The inputs are independent white Gaussian noises, zero mean
and unit variance. The innovation process {et} has unit
variance. We perform NMC = 125 Monte Carlo experiments
and, for each run, a random ARMAX model is generated as
follows:

• first the number m1 of inputs affecting the system is
generated as an uniform random variable in the set
{0,1,2, ..,8}.

• Then, w.l.o.g., we fix Bm1+1(z) = ... = Bm(z) = 0 while
the polynomials A(z), Bi(z), i = 1, ..,m1 are generated
using the MATLAB function drmodel.m; the order is
chosen at random in the interval [1,30].

• The polynomial C(z) is, with probability 0.5, fixed equal
to A(z) (i.e. we consider and Output Error model) and
with probability 0.5 it is randomly generated using again
the function drmodel.m.

The system and the predictor poles are restricted to lie
inside the circle of radius 0.95 while the �2 norm of each
impulse response is bounded by 5 (drmodel.m is repeat-
edly called at any run until such requirements are fulfilled).

We compare the following estimators:

1) SS-GLAR described in Section IV; the parameters
β ,γ2 and the level of sparsity (i.e. the number of
nonzero impulse responses) is determined using the
validation based approach described above.

2) VARX-GLAR described in Section III. The order of
the VARX models is constrained to be between 1 and
30; both this order and the number of nonzero com-
ponents have been estimated using the same validation
based approach as above.

3) Matlab PEM, with order estimated using the validation
based approach discussed above.

Average RMS1
SS-GLAR VARX-GLAR PEM

Example 1 1.2378 1.2680 1.5644
Example 2 1.2647 1.4095 2.4482

Average Err0
SS-GLAR VARX-GLAR PEM

Example 1 0.1861 0.2582 0.2153
Example 2 0.0718 0.1899 0.3658

Average Err1
SS-GLAR VARX-GLAR PEM

Example 1 0.2806 0.2386 0.1066
Example 2 0.3940 0.4824 0.7240

TABLE I

AVERAGE RMS1 (TOP), Err0 (CENTER) AND Err1 (BOTTOM).

E. Discussion of the results

The two examples highlight the potential of both VARX-
GLAR and, in particular, SS-GLAR in estimating high-
dimensional sparse dynamical systems. Example 1 shows
that exploiting sparsity, as done by SS-GLAR and VARX-
GLAR, allows to obtain very good performance even when
compared to PEM which uses the correct order. Instead,
when a more realistic setup in which the correct order is
not known by PEM (and hence it has to be estimated from
data), both SS-GLAR and VARX-GLAR outperform PEM;
see Table V-E and Figures 2 and 3. Note that in this second
simulation study the systems are randomized.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have proposed a new non-parametric
estimator for high dimensional linear systems; input selection
is performed efficiently via the Group LAR algorithm. Exper-
imental evidence shows that the new algorithm outperforms
classical parametric estimation methods when applied to
systems with a large number of candidate inputs.

Future work will include more efficient methods for hy-
perparameters selection. Also richer structures which account
for high frequency components in the predictors (as done in
[25]) as well as flexible Kernels allowing different levels of
regularity for different input channels will be studied.
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